Composite Current Control Method for Small Inertia Infrared Stable Platforms
-
-
Abstract
Miniaturization and high dynamics are the development trends of infrared imaging stabilization platform technology. Owing to a small moment of inertia, traditional PI(Proportion Integral)-type current loop control cannot completely overcome the slope interference of the back electromotive force(back-EMF), which will reduce the dynamic response of small inertia infrared stable platforms. Concurrently, balancing dynamics and anti-disturbance performance is another difficulty with regard to high dynamic and small inertia infrared stable platform technology. To solve the a forenoted problems, a composite current control method based on dead-beat predictive control and extended state observation(ESO) is proposed in this paper, which effectively improves the dynamic response and anti-disturbance ability of small inertia infrared stable platforms. Simulation and experimental results show that the composite current control method reduces the settling time of the current loop of a small inertia infrared stable platform by 1/3. It also improves the dynamic performance and anti-disturbance performance of the speed response, and has good performance robustness.
-
-