A Visible and Infrared Image Fusion Algorithm Based on Adaptive Enhancement and Saliency Detection
-
-
Abstract
This paper proposes a visible and infrared image fusion algorithm to solve the problem of the poor visibility of visible images and control the input volume of visible and infrared images. The proposed method combines image adaptive enhancement with uniqueness (U), focus (F), and object (O) saliency detection. First, an adaptive enhancement algorithm was applied to the visible image to improve the visibility of the textural details and normalize the infrared image. Second, the processed image was decomposed into a detail layer and base layer using guided filtering. A weight map of the detail layer was generated using saliency detection to improve the accuracy of the fusion of the background information of the visible image and the edge information of the infrared image in the detail layer. Finally, the fused image was obtained by combining the detail and base layers. To verify the performance of the proposed algorithm, five fusion evaluation indices: image entropy, average gradient, edge intensity, spatial frequency, and visual fidelity, were selected to quantitatively analyze the fused images. The YOLO v5 network was used to perform target detection for each fusion algorithm. The results show that the proposed algorithm achieved the optimal average accuracy in terms of the qualitative, quantitative, and target detection evaluation indexes of fusion.
-
-