基于区域对比和随机森林的设备故障红外图像敏感区域提取
Infrared Image ROI Extraction Based on Region Contrast and Random Forest
-
摘要: 基于红外图像的设备故障诊断需要从图像中选择敏感区域,由于红外图像具有干扰背景多、对比度低的特点,敏感区域提取过程中需要进行背景移除和图像分割,但常用的二值化分割算法在分割红外图像时易出现过分割问题.因此,本文提出了基于区域对比和随机森林的敏感区域提取方法.首先使用区域对比方法对红外图像进行显著性检测,以去除干扰背景;然后通过OTSU算法进行图像分割,实现敏感区域初步提取;最后结合随机森林分类结果对图像分割过程的阈值进行迭代优化,实现敏感区域的优化提取.经过转子实验台6种不同状态的红外图像数据验证,将本文方法提取出的故障敏感区域用于故障诊断时,分类的准确率提高了3.3个百分点,比人工选择的区域更加准确.